
Predicting times of waiting on red signals using BERT

Witold Szejgis
TensorCell

witoldszejgis@gmail.com

Anna Warno
TensorCell

Faculty of Mathematics, Informatics and Mechanics
University of Warsaw

aw383513@students.mimuw.edu.pl

Paweł Gora
TensorCell

Faculty of Mathematics, Informatics and Mechanics
University of Warsaw

p.gora@mimuw.edu.pl

Abstract

We present a method for approximating outcomes of road traffic simulations using
BERT-based models, which may find applications in, e.g., optimizing traffic signal
settings, especially with the presence of autonomous and connected vehicles. The
experiments were conducted on a dataset generated using the Traffic Simulation
Framework software runs on a realistic road network. The BERT-based models
were compared with 4 other types of machine learning models (LightGBM, fully
connected neural networks and 2 types of graph neural networks) and gave the best
results in terms of all the considered metrics.

1 Introduction

In this article, we focus on one of the most important aspects of traffic management - traffic signal
control. We present a new algorithm based on BERT for estimating the times of waiting on red
signals depending on the traffic signal settings.

In general, finding the optimal settings of traffic signals is an NP-hard problem even for relatively
simple mathematical models of traffic (in reality, when traffic conditions may dynamically change,
even defining what the optimality of signal settings actually mean can be difficult) [1]. However,
assuming that we can accurately predict times of waiting on red signals for different traffic signal
settings, we can explore a large space of possible solutions using metaheuristics (e.g., genetic
algorithms) in order to find heuristically optimal settings. Usually, the quality of settings can be
evaluated using traffic simulations [2], but in the case of large road networks and evaluating traffic
for long time periods, this method can be too time-demanding [3]. One of the recent and interesting
approaches to solve this issue is to use surrogate models based on machine learning (e.g., neural
networks or LightGBM) to approximate the outcomes of traffic simulations [4, 5, 6, 7]. Such methods
can be very efficient, as they return the results of evaluations a few orders of magnitude faster than in
the case of computer simulations while preserving a good accuracy of approximations [4, 5, 6, 7].
For example, the recent works showed that it may be possible to approximate the outcomes of traffic
simulations where the input is a vector representing signal settings and the output computed by the
simulations is the total time of waiting on red signals in a given urban area and in a given time
period [4, 5, 6, 7]. However, these works assumed that durations of green and red signal phases are
constant (e.g., lasting 58 and 62 seconds, respectively [4]) and the only possible way of controlling
traffic signal settings is by modifying traffic signal offsets (time in seconds from the beginning of a

Machine Learning for Autonomous Driving Workshop at the 34th Conference on Neural Information Processing
Systems (NeurIPS 2020), Vancouver, Canada.



simulation to the first switch from the red signal state to the green signal state for a representative
signal from a given intersection). In this paper, we extend this approach in order to consider not only
various offsets but also various durations of green signal phases. For this task, we developed a new
method for approximating traffic simulation outcomes based on the usage of the pretrained BERT
model [8].

BERT is a transformer neural network using attention mechanism which has been successful in
natural language processing [8]. It has been pretrained on Wikipedia and BookCorpus and can be
used in a number of downstream tasks like sentence and token classification, or question answering,
and in many cases it achieved state of the art results [8]. However, in this paper, we trained BERT
to approximate outcomes of traffic simulations (the total time of waiting on red signals) for a given
traffic signal setting. To the best of our knowledge, this is the first usage of BERT in such a task and
probably even the first in the traffic prediction and traffic analysis domains.

In this paper, we evaluate 2 BERT-based models and compare them with other machine learning
models which gave good results in the previous research works [4, 5, 6, 7] (feed forward neural
networks, graph neural networks, graph convolutional neural networks, LightGBM), which are
summarized in Section 2. We ran a series of experiments on a large dataset generated using traffic
simulations on a realistic road network. The results presented in Section 3 proved that the BERT-based
models outperform other machine learning models. Therefore, BERT-based models can be later used
as metamodels in experiments with traffic signal settings optimization using metaheuristics which is
one of the goals of our future research.

In general, the presented method can be used for traffic signal control in any conditions, even
without the presence of autonomous vehicles. However, it can be especially beneficial in the era
of connected and autonomous vehicles when mathematical traffic models used in simulations can
be more consistent with real-world traffic thanks to the knowledge about the algorithms controlling
vehicles as well as the additional data gathered from the vehicles (e.g., planned routes).

2 Related works

Recently, a number of works using transformer neural networks with the attention mechanism in data
outside of the NLP scope have been published. In computer vision, they obtained state of the art
results in object detection and classification [9]. In the context of graph data, both transformers and
attention mechanism [10] have been successfully applied in a number of different datasets [10], [11],
[12]. BERT network has been successfully applied for images [13], audio [14] and graph data [15].

On the other hand, several research papers have been published in the domain of approximating
traffic simulation outcomes using machine learning models such as fully connected neural networks
or LightGBM [4, 5, 6, 7]. These methods assumed that durations of green signal phases are constant
in both directions, so that offsets are the only modifiable parameter. However, to the best of our
knowledge, there were no previous applications of BERT (or even transformer neural networks with
the attention mechanism) to this task, or as surrogate models, in general.

3 Experiments

3.1 Setup

In order to conduct experiments and train BERT-based models and other machine learning models, we
generated a dataset using the Traffic Simulation Framework software [2], which evaluated 1470972
different signal settings on the Stara Ochota district in Warsaw with 21 intersections with traffic
signals (the road network data were acquired from the OpenStreetMap service [16]). Each evaluation
was a 10-minute long simulation of a realistic traffic with 42000 cars. Each setting consisted of 63
integer values, 3 values per intersection: durations of green signal phases in 2 directions (values from
the set {20, 21, . . . , 80}) and an offset (with values from the set {0, 1, 2, . . . ,max}, where max
depends on the sum of durations of green signal phases in both directions). The dataset is publicly
available to facilitate the future research on that topic [17].

Then, we trained BERT-based models (Section 3.2) as well as 4 types of machine learning models for
comparison (Section 3.3): LightGBM, fully connected neural networks (FCNN), Graph Convolutional
Networks (GCN) and Graph Neural Networks (GNN). For every model, the input was standardized

2



[18]. Also, in the case of GCN and GNN the input had a size 3x21, in the case of LightGBM and
FCNN: 63 (3 values for 21 intersections). For BERT, we added special separators after each triple of
values (for each intersection) which added 20 values and made an input of the size 83. In most cases,
the output (the total time of waiting on red signals, in seconds) was not normalized (normalization
gave worse performance), the only exception was BERT’s one-stage method.

About 80% of the dataset (1176776 elements) was used for training, 147098 of elements were used
for validation and the remaining 147098 elements were used as a test set. The results of training were
evaluated on a test set and compared using 3 metrics: MAPE, MAXPE (maximum percentage error),
MAXPE99 (maximum percentage error among best 99% results - 99-th percentile).

3.2 Experiments with BERT

Standard BERT language model (BERT-base-uncased) from the Hugging Face library [19] was taken
as a starting point of the training. Due to BERT’s limitations [8], an offset of 200 was added to all
node features, so they don’t overlap with range reserved for special tokens like <CLS> or <SEP>.
The triples of features of each node were separated by <SEP> token.

We tested 2 types of methods for training BERT: Two-step method and One-step method. The
two-step method uses a typical way of using BERT network in regression problems. In the first step,
classification is performed on bucketized outputs. To obtain class categories, a continuous output
is first normalized using min-max scaler and then divided into 15 equally separated buckets. Using
these labels, BERT network is trained in a standard manner for BERT sentence classification. In the
second step, regression is performed on the BERT embeddings generated for each training input by
model from step 1. The regression network is a fully connected neural network with dropout. The
initial classification training was performed for 15 bucketized classes. In the classification phase,
optimization was run for 15 epochs using Adam optimizer, learning rate set to 2e−5, weight decay of
0.01 and batch size set to 100. The regression network was (768, 512, 1) a fully connected network
with dropout equal to 0.05. In the regression phase, learning rate was set to 0.01 and the training was
performed for 12 epochs.

In the One-step method, BERT is built into a fully connected neural network, which in each step of
training generates embedding and performs a backpropagation with updating of BERT weights. A
regression part of the network has analogous architecture as in the two-step method with a batch size
set to 64, a learning rate of 5e− 5, and a training time of 12 epochs.

The results for both models are presented in Table 1.

3.3 Experiments with other models

Experiments with 4 other models have been conducted. LightGBM [20] and FCNN were used as
benchmarks for regression problem as well as GCN [21] and GNN [22] state-of-the-art architectures
suited for graph structures which road crossings form.

3.3.1 LightGBM

Implementation from LightGBM python package was used [20]. Hyperparameters were found
using Hyperopt [23] (based on Bayesian approach) for 300 iterations with k-fold cross vali-
dation for k = 5, mean squared error was used as a loss function. The following parame-
ters were investigated: learning_rate - uniform (0.001, 0.8), max_depth - integer (3, 20),
min_child_weight - integer (1, 20), colsample_by_tree - uniform (0.3, 0.8), subsample -
uniform (0.8, 1), n_estimators - {100, 250, 500}. Results for the model with optimal parameters
(colsample_bytree = 0.797, learning_rate = 0.164, max_depth= 9, min_child_weight =
1,n_estimators = 500, subsample = 0.814) are presented in Table 1.

3.3.2 FCNN

Neural networks were trained with three different activations functions (relu, leakyrelu, tanh). Archi-
tectures with non-increasing sequences of neurons in hidden layers from the set {256, 128, 64, 48, 32,
16, 8, 4} with a maximum length of 9 were tested. Networks were trained with batch normalization.
MSE was used as a loss function, Adam optmizer with ReduceLROnPlateau (factor = 0.2, patience =

3



2) and starting learning rate = 0.05, batch size = 2048 was chosen as an optimizer. The early stopping
mechanism was applied, so the number of training epochs was different for different activation
functions and did not exceed 100. Results for the best model (FCNN - leakyrelu, (63, 256, 128, 64,
48, 32, 16, 8, 1), neurons in hidden layers) are presented in Table 1.

3.3.3 Graph Convolutional Network

GCN architecture was based on graph convolutional layers [21] with normalized adjacency matrix
followed by dense linear layers. Networks with 1-4 graph convolution layers and non-increasing
sequences of neurons in dense linear layers from the set { 64, 48, 32, 16, 8, 4 } with maximum
length of 6, relu or leakyrelu activation function were tested. MSE was used as a loss function, Adam
optmizer with ReduceLROnPlateau (factor = 0.2, patience = 2) and starting learning rate = 0.05, batch
size = 2048 was chosen as an optimizer. The number of training epochs was different for different
activation functions (the early stopping mechanism was implemented) but did not exceed 100. Results
for the best model (GCN with 4 graph convolutionals layers and (21, 128, 48, 32) neurons in hidden
layers with activation function leakyrelu) are presented in Table 1.

3.3.4 GNN

This architecture was a graph neural network inspired by [22]. It had sparse layers where connections
from a neuron in one layer to a neuron in the next layer is only present if the corresponding vertices
are neighbors in the road network graph. The tanh activation function was used for the neurons
corresponding to road network intersections (this activation function was proven to be superior
in similar tasks [7]), followed by dense linear layers with leakyrelu or relu activation function.
Architectures with 1-4 such sparse layers, 1-4 channels and the same setup as for GCN were tested.
The results are presented in Table 1.

Table 1: Results for BERT based methods

Model RMSE MAPE MAXPE MAXPE99

BERT one-step 1305 1.99% 17.79% 6.64%
BERT two-step 1308 1.99% 22.35% 10.83%
LightGBM 2176 3.4% 27.1% 11.7%
FCNN 2369 3.7% 27.1% 11.7%
GCN 5120 7.78% 44.2% 25.14%
GNN 4515 6.86% 41.65% 22.91%

4 Conclusions

We presented a method for approximating outcomes of traffic simulations for different settings of
traffic signals using pretrained BERT-based models. Such models outperformed other machine
learning methods (which were proven successful in similar tasks, but without modifiable green signal
phase durations) in terms of mean percentage error and maximal errors (for the whole test set and the
top 99% of the test set). The one-step method outperforms other models.

The achieved results have the potential of being used to build the next generation of traffic signal
control systems that may be especially successful in the era with connected and autonomous vehicles.
The knowledge about vehicle control algorithms and availability of traffic data may help in building
traffic simulation models more consistent with actual traffic.

As for future work, we are planning to test more BERT-based (and transformer-based) architectures.
In addition, we will run experiments with metaheuristics (e.g., genetic algorithms) searching space of
traffic signal settings in order to find the best signal control solutions, in which the setting’s evaluation
will be done using the trained metamodels (a direct application to the traffic signal control task). Also,
we are going to work on scalability of the presented method and run experiments for other urban
districts and different road network topologies.

4



References
[1] Yang C.B. and Yeh Y. J. “The model and properties of the traffic light problem”, in “Proc. of International

Conference on Algorithms”, Kaohsiung, Taiwan, 1996, pp. 19-26.

[2] Gora P., “Traffic Simulation Framework - a Cellular Automaton based tool for simulating and investigating
real city traffic”, in “Recent Advances in Intelligent Information Systems”, 2009, pp. 641-653.

[3] Gora P., Pardel P., “Application of genetic algorithms and high-performance computing to the Traffic Signal
Setting problem”, in “24th International Workshop, CS&P 2015, Vol. 1”, Rzeszów, 2015, pp. 146-157.

[4] Gora P., Kurach K. “Approximating Traffic Simulation using Neural Networks and its Application in Traffic
Optimization”, in “NIPS 2016 Workshop on Nonconvex Optimization for Machine Learning: Theory and
Practice.”, 2016.

[5] Gora P., Bardoński M., “Training neural networks to approximate traffic simulation outcomes”, in “2017
5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems
(MT-ITS), IEEE”, 2017, pp. 889–894.

[6] Gora P., Możejko M., Brzeski M., Klemenko A., Kochański A., “Investigating performance of neural
networks and gradient boosting models approximating microscopic traffic simulations in traffic optimization
tasks”, https://arxiv.org/abs/1812.00401, 2018.

[7] Możejko M., Brzeski M., Mądry Ł., Skowronek Ł., Gora P., “Traffic Signal Settings Optimization Using
Gradient Descent”, in “Schedae Informaticae”, Vol. 27, 2018, pp. 19–30.

[8] Devlin J., Chang M.W., Lee K., Toutanova K., “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”, https://arxiv.org/abs/1810.04805, 2019.

[9] Carion N., Massa F., Synnaeve G., Usunier N., Kirillov A., Zagoruyko S., “End-to-End Object Detection
with Transformers”, https://arxiv.org/abs/2005.12872, 2020.

[10] Veličković P., Cucurull G., Casanova A., Romero A., Liò P., Bengio Y., “Graph Attention Networks”,
https://arxiv.org/abs/1710.10903, 2017.

[11] Maziarka L., Danel T., Mucha S., Rataj K., Tabor J., Jastrzębski S., “Molecule Attention Transformer”,
https://arxiv.org/abs/2002.08264, 2020.

[12] Parmar N., Vaswani A., Uszkoreit J., Kaiser Ł., Shazeer N., Ku A., Tran D., “Image Transformer”,
https://arxiv.org/abs/1802.05751, 2018.

[13] Qi D., Su L., Song J., Cui E., Bharti T. and Sacheti A., “ImageBERT: Cross-modal Pre-training with
Large-scale Weak-supervised Image-Text Data”, ArXiv abs/2001.07966, 2020.

[14] Chuang Y.S., Liu C.L., Lee H.Y., Lee L.S., “SpeechBERT: An Audio-and-text Jointly Learned Language
Model for End-to-end Spoken Question Answering”, arXiv: Computation and Language, 2020.

[15] Zhang J., Zhang H., Xia C. and Sun L., “Graph-Bert: Only Attention is Needed for Learning Graph
Representations”, arXiv preprint arXiv:2001.05140, 2020.

[16] OpenStreetMap service, https://openstreetmap.org [last accessed: 14.10.2020].

[17] Dataset used in experiments to train metamodels http://www.mimuw.edu.pl/~pawelg/
TensorTraffic_Datasets/1.5mln.csv.

[18] Documentation of the StandardScaler from the scikit-learn library https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html [last accessed: 14.10.2020]

[19] “HuggingFace’s Transformers: State-of-the-art Natural Language Processing”, Wolf T., Debut L., Sanh
V., Chaumond J., Delangue C., Moi A., Cistac P., Rault T., Louf R., Funtowicz M., Davison J., Shleifer S.,
von Platen P., Ma C., Jernite Y., Plu J., Xu C., Le Scao T., Gugger S., Drame M., Lhoest Q., Rush A.M.,
https://arxiv.org/abs/1910.03771, 2020.

[20] Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Ye Q., & Liu T. Y., “Lightgbm: A highly
efficient gradient boosting decision tree”, in “Advances in neural information processing systems”, 2017,
pp. 3146–3154.

[21] Kipf T. N., & Welling M., “Semi-supervised classification with graph convolutional networks”, 2016,
https://arxiv.org/abs/1609.02907.

[22] Gora P., “Optimizing complex processes using graph neural networks and genetic algorithms”, presen-
tation at ML in PL 2019 conference, https://www.youtube.com/watch?v=YDvF1Qdojs0 [last accessed:
14.10.2020].

[23] Bergstra J., Komer B., Eliasmith C., Yamins D. and Cox D., “Hyperopt: a Python library for model
selection and hyperparameter optimization”, in “Computational Science & Discovery”, vol. 8, 2015, pp.
014008.

5

http://www.mimuw.edu.pl/~pawelg/TensorTraffic_Datasets/1.5mln.csv
http://www.mimuw.edu.pl/~pawelg/TensorTraffic_Datasets/1.5mln.csv

	Introduction
	Related works
	Experiments
	Setup
	Experiments with BERT
	Experiments with other models
	LightGBM
	FCNN
	Graph Convolutional Network
	GNN


	Conclusions

